Vehicle Technologies Office

ES297: Computer Aided Engineering of Batteries (CAEBat) Program Introduction

June 6, 2017

David Howell Brian Cunningham (Presenter) Tien Duong
Peter Faguy
Samuel Gillard

Overview

- Vehicle Technologies Office Energy Storage Overview
- CAEBat History
 - Program Objectives
 - Phase I
 - Phase II
 - Phase III
 - Phase IV
- AMR Agenda
- Conclusions

VTO Energy Storage R&D Overview and Strategy

CHARTER: Develop battery technology that will enable large market penetration of electric drive vehicles

Cost Goal: \$100/kWh_(useable)

Energy Storage R&D

Battery Materials Research (BMR)

Applied Battery Research (ABR)

Battery Development

Battery Testing, Design, & Analysis

VTO Energy Storage R&D Overview and Strategy

CHARTER: Develop battery technology that will enable large market penetration of electric drive vehicles

Cost Goal: \$100/kWh_(useable)

Energy Storage R&D

Applied Battery Research (ABR)

Top cover
Gasket

Cathode lead
Safety vent and CID
(PTC)

Separator

Advanced Processing
Technologies

Insulator

Cathode Anode

Battery Development

Battery Testing, Design, & Analysis

CAEBat Initial Program Objectives

- Program was intended to incorporate existing and new models into a battery design suite with the goal of shortening battery design cycles and optimizing batteries (cells and packs) for improved performance, safety, long life, and low cost
- Battery design suite must address multi-scale physics interactions, be flexible, expandable, validated and verified

CAEBat Overall Program

Element 1
Component
Level Models

Element 2 Cell Level Models Element 3
Battery Pack
Level Models

Element 4: Open Architecture Software

CAEBat History: Phase I

- Initial solicitation issued in 2011 for industry to address Elements 2 & 3
- 3 teams were selected with \$7M in DOE funds:
 - EC Power / PSU / Ford / JCI
 - CD-adapco / Battery Design / A123 / JCS
 - GM / ANSYS / E-Sim
- Projects completed FY15
- Resulted in 3 commercially available software packages
 - EC Power's AutoLion
 - CD-adapco's STAR-CCM+/Battery Simulation Module
 - ANSYS's FLUENT/Total Battery Simulator Module
- Conservative estimates predict around 150+ users/paid licensees

CAEBat History: Phase I – Open Architecture

- In parallel to 3 industry awards, ORNL was tasked to develop an open architecture that would enable users to mix and match models from each battery level (i.e. materials component, cell, and pack)
- ORNL developed VIBE a Virtual Integrated Battery Environment
 - Standardized input and outputs for various elements
 - Battery model library
 - Includes visualization and meshing
 - Allows optimization parameter sweeps using DAKOTA
 - Can be downloaded in a Virtual Machine @ http://batterysim.org/
 - Complete Documentation available with help support
- Over 300 downloads from labs, academia, and industry all over the world
- Website receives almost 500 hits/month

CAEBat History: Phase 2 and 3

- 2nd solicitation issued in FY13 to expand upon the current state of electric drive vehicular battery computer-aided engineering models
- Projects were 2 years in duration (FY14 and FY15)
- 3 teams were selected with \$4.5M in DOE funds:
 - NREL / ANSYS / MIT
 - EC Power
 - Sandia / Oak Ridge / Colorado School of Mines
- Phase 3 Lab Call issued in FY15 to improve modeling of safety events, computational speed, and microstructure models
- 2 lab consortiums awarded 3 year projects (FY16-FY18) at ~3.5-4M/yr
 - NREL led team with ANL, SNL, ANSYS, and Texas A&M
 - ORNL led team with LBNL and SNL

CAEBat History: Phase 4

- 2015 FOA selected 3 projects to award with 2 ultimately being funded
 - Ford, ORNL, and Livermore Software Technology Corporation (LS-Dyna)
 - GM, ANSYS, NREL, and Esim
- 3 year projects ~\$5M in DOE funds

AMR Agenda

				Organizatio
Time	ID	Project Title	PI	n
		Computer-Aided Engineering of Batteries (CAEBAT) Program		
11:15	es297	Introduction	Brian Cunningham	DOE
		Efficient Simulation and Abuse Modeling of Mechanical-	Shiram	
11:30	es298	Electrochemical-Thermal Phenomena in Lithium-Ion Batteries	Santhanagopalan	NREL
		Microstructure Characterization and Modeling for Improved		
12:00	es299	Electrode Design	Kandler Smith	NREL
		Enhancement and Deployment of VIBE, the Open Architecture		
13:45	es300	Software (OAS) Environment	Srikanth Allu	ORNL
		Experiments and Models for the Mechanical Behavior of		
14:15	es301	Battery Materials	Sergiy Kalnaus	ORNL
		Microstructure Imaging and Electrolyte Transport Property		
14:45	es302	Measurements for Mathematical Modeling	Venkat Srinivasan	ANL
		Exploring How Electrode Structure Affects Electrode-Scale		
15:15	es303	Properties Using 3-D Mesoscale Simulations	Scott Roberts	SNL
		Development and Validation of a Simulation Tool to Predict		
		the Combined Structural, Electrical, Electrochemical, and	Chulheung Bae	Ford Motor
16:15	es296	Thermal Responses of Automotive Batteries		Co.

For More Information...

For More Information...

